Your browser is not supported. Please download Mozilla Firefox or Google Chrome browser.

coggno-logo2
Items in Cart: 0 items
Cart Total
Checkout
Filters Applied
  • Category: Academic
  • Sub Category: Energy Conversion
Reset All
Best Sellers
3032

Power Cycles and Combustion Analysis Webinar

In this webinar material, the student gets familiar with the ideal simple and basic power cycles and combustion and their T - s, p - V and h - T diagrams, operation and major performance trends when air, argon, helium and nitrogen are considered as the working fluid. Performance Objectives: Introduce basic energy conversion engineering assumptions and equations Know basic elements of Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle and combustion and their T - s, p - V and h - T diagrams Be familiar with Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle and combustion operation Understand general Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle and combustion performance trends

Visited 2,155 times
$20.00
Preview_tag_mp

National Association of Professional Receptionists e-Learning Program

Take charge of your career with the NAPR e-learning program. This highly interactive program is skill-focused with your personal and professional development as the end goal. Review the program contents to see what courses are yours for only $129.95! By enrolling in this program, you agree that the $129.95 is the cost for ONE person for a period of one year.

Visited 1,780 times
$129.95
Recommended
3032

Power Cycles and Combustion Analysis Webinar

In this webinar material, the student gets familiar with the ideal simple and basic power cycles and combustion and their T - s, p - V and h - T diagrams, operation and major performance trends when air, argon, helium and nitrogen are considered as the working fluid. Performance Objectives: Introduce basic energy conversion engineering assumptions and equations Know basic elements of Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle and combustion and their T - s, p - V and h - T diagrams Be familiar with Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle and combustion operation Understand general Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle and combustion performance trends

Visited 2,155 times
$20.00
Preview_tag_mp

National Association of Professional Receptionists e-Learning Program

Take charge of your career with the NAPR e-learning program. This highly interactive program is skill-focused with your personal and professional development as the end goal. Review the program contents to see what courses are yours for only $129.95! By enrolling in this program, you agree that the $129.95 is the cost for ONE person for a period of one year.

Visited 1,780 times
$129.95
All Courses
3032

Power Cycles and Combustion Analysis Webinar

In this webinar material, the student gets familiar with the ideal simple and basic power cycles and combustion and their T - s, p - V and h - T diagrams, operation and major performance trends when air, argon, helium and nitrogen are considered as the working fluid. Performance Objectives: Introduce basic energy conversion engineering assumptions and equations Know basic elements of Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle and combustion and their T - s, p - V and h - T diagrams Be familiar with Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle and combustion operation Understand general Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle and combustion performance trends

Visited 2,155 times
$20.00
11274

Energy Conversion Ideal vs Real Operation Analysis Webinar

In this webinar, the engineering students and professionals get familiar with the simple and basic power cycles, power cycle components/processes and compressible flow and their T - s, p - V and h - T diagrams, ideal vs real operation and major performance trends when air is considered as the working fluid. Performance Objectives: Introduce basic energy conversion engineering assumptions and equations Know basic elements of Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion and expansion processes and compressible flow (nozzle, diffuser and thrust) and their T - s, p - V and h - T diagrams Be familiar with Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion, expansion and compressible flow (nozzle, diffuser and thrust) ideal vs real operation Understand general Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion, expansion and compressible flow (nozzle, diffuser and thrust) performance trends

Visited 2,314 times
$25.00
3034

Power Cycle Components/Processes and Compressible Flow Analysis Webinar

In this webinar material, the student gets familiar with the ideal power cycle components/processes and compressible flow components and their T - s and h - T diagrams, operation and major performance trends when air, argon, helium and nitrogen are considered as the working fluid. Performance Objectives: Introduce basic energy conversion engineering assumptions and equations Know basic elements of compression, combustion and expansion processes and compressible flow (nozzle, diffuser and thrust) and their T - s and h - T diagrams Be familiar with compression, combustion, expansion and compressible flow (nozzle, diffuser and thrust) operation Understand general compression, combustion, expansion and compressible flow (nozzle, diffuser and thrust) performance trends

Visited 1,871 times
$20.00
3039

Advanced Energy Conversion Analysis Webinar

In this webinar, the student gets familiar with the ideal simple and basic power cycles, power cycle components/processes and compressible flow and their T - s, p - V and h - T diagrams, operation and major performance trends when air, argon, helium and nitrogen are considered as the working fluid. Performance Objectives: Introduce basic energy conversion engineering assumptions and equations Know basic elements of Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion and expansion processes and compressible flow (nozzle, diffuser and thrust) and their T - s, p - V and h - T diagrams Be familiar with Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion, expansion and compressible flow (nozzle, diffuser and thrust) operation Understand general Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion, expansion and compressible flow (nozzle, diffuser and thrust) performance trends

Visited 1,988 times
$25.00
3030

Energy Conversion Analysis Webinar

In this webinar material, the student gets familiar with the ideal simple and basic power cycles, power cycle components/processes and compressible flow and their T - s, p - V and h - T diagrams, operation and major performance trends when air is considered as the working fluid. Performance Objectives: Introduce basic energy conversion engineering assumptions and equations Know basic elements of Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion and expansion processes and compressible flow (nozzle, diffuser and thrust) and their T - s, p - V and h - T diagrams Be familiar with Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion, expansion and compressible flow (nozzle, diffuser and thrust) operation Understand general Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion, expansion and compressible flow (nozzle, diffuser and thrust) performance trends

Visited 2,223 times
$20.00
3037

Combustion Analysis Webinar

In this webinar material, the student gets familiar with the ideal combustion and its h - T diagram, operation and major performance trends. Six different fuels (carbon, hydrogen, sulfur, coal, oil and gas) react with air and oxygen enriched air as the oxidant at different stoichiometry values (stoichiometry => 1) and oxidant inlet temperature values. Performance Objectives: Introduce basic energy conversion engineering assumptions and equations Know basic elements of combustion and its h - T diagram Be familiar with combustion operation Understand general combustion performance trends

Visited 2,012 times
$20.00
11037

Advanced Combustion Analysis Quiz

A ten (10) question quiz for the Advanced Combustion Analysis course. The purpose of this ten (10) question quiz is to help students demonstrate that they have developed basic understanding of the subject matter covered by the provided coursework material.

Visited 1,469 times
$10.00