Created by Gordan Feric
Category Engineering > Other
The ideal power cycle components/processes (compression, combustion and expansion) are presented in this course material.
When dealing with power cycle components/processes (compression and expansion), air, argon, helium and nitrogen are used as the working fluid.
When dealing with combustion, six different fuels (carbon, hydrogen, sulfur, coal, oil and gas) react with air and oxygen enriched air as the oxidant at different stoichiometry values (stoichiometry => 1) and oxidant inlet temperature values.
For compression and expansion, the technical performance of mentioned power cycle components/processes is presented with a given relationship between pressure and temperature. While for combustion, the technical performance at stoichiometry => 1 conditions and is presented knowing the specific enthalpy values for combustion reactants and products, given as a function of temperature. This course material provides the compression and expansion T - s diagrams and their major performance trends plotted in a few figures as a function of compression and expansion pressure ratio and working fluid mass flow rate. For each combustion case considered, combustion products composition on both weight and mole basis is given in tabular form and plotted in a few figures. Also, flame temperature, stoichiometric oxidant to fuel ratio and fuel higher heating value (HHV) are presented in tabular form and plotted in a few figures. The provided output data and plots allow one to determine the major combustion performance laws and trends.
In this course material, the student gets familiar with the ideal power cycle components/processes and their T - s and h - T diagrams, operation and major performance trends.
Compression
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Combustion
Analysis
Case Study A
Case Study B
Case Study C
Case Study D
Assumptions
Governing Equations
Input Data
Results
Case Study A
Case Study B
Case Study C
Case Study D
Figures
Conclusions
Expansion
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Understand basic energy conversion engineering assumptions and equations
Know basic elements of the compression, combustion and expansion processes
Be familiar with the compression
Understand general compression, combustion and expansion performance trends
English
Or
Get this course, plus 1,230+ of our top-rated courses, with Coggno Prime
Resold modules appear on your website. You earn syndication share from each purchase. Contact Coggno to learn more on how to embed your own Portable Webshop in your website.
ResellSale Share: $6.00