Courses from $19.99

|

Limited time sale ending soon

Power Cycles and Power Cycle Components/Processes Analysis

Power Cycles and Power Cycle Components/Processes Analysis

5.0

Created by   Gordan Feric

Category   Engineering   >   Other

Duration 100 minutes
Audience Employees

Description

The ideal, simple and basic power cycles (Carnot Cycle, Brayton Cycle for both power and propulsion applications, Otto Cycle and Diesel Cycle) and ideal power cycle components/processes (compression, combustion and expansion) are presented in this course material.  In the presented power cycles and power cycle components/process analysis, air is used as the working fluid.

For each power cycle thermal efficiency derivation is presented with a simple mathematical approach.  Also, for each power cycle, a T - s diagram and power cycle major performance trends (thermal efficiency, specific power output and power output) are plotted in a few figures as a function of compression ratio, turbine inlet temperature and/or final combustion temperature and working fluid mass flow rate.  It should be noted that this course material does not deal with costs (capital, operational or maintenance).

For compression and expansion, the technical performance of mentioned power cycle components/processes is presented with a given relationship between pressure and temperature.  While for combustion, the technical performance at stoichiometric conditions is presented knowing the specific enthalpy values for combustion reactants and products, given as a function of temperature.  This course material provides the compression and expansion T - s diagrams and their major performance trends plotted in a few figures as a function of compression and expansion pressure ratio and working fluid mass flow rate.  For each combustion case considered, combustion products composition on both weight and mole basis is given in tabular form and plotted in a few figures.  Also, flame temperature, stoichiometric oxidant to fuel ratio and fuel higher heating value (HHV) are presented in tabular form and plotted in a few figures.  The provided output data and plots allow one to determine the major combustion performance laws and trends.

In this course material, the student gets familiar with the ideal simple and basic power cycles and power cycle components/processes and their T - s and h - T diagrams, operation and major performance trends.

Table of Contents

Carnot Cycle
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Brayton Cycle (Gas Turbine) for Power Application
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Brayton Cycle (Gas Turbine) for Propulsion Application
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Otto Cycle
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Diesel Cycle
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Compression
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Combustion
Analysis
Assumptions
Governing Equations
Input Data
Results
Figures
Conclusions
Expansion
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions

What you'll learn

Understand basic energy conversion engineering assumptions and equations

Know basic elements of Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, Compression, Combustion, Expansion processes and their diagrams

Be familiar with Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, Compression, Combustion, Expansion operation

Understand Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, Compression, Combustion, Expansion performance trends

Languages

English

Details to know

Certificate
Bookmark

Gordan Feric

His over 25 years engineering experience includes performing analytical modeling and computer modeling of physical properties, power cycles, power cycle components/processes and compressible flow.  Also, conducting conceptual design, analysis and evaluation of energy conversion systems for basic and simple power and propulsion cycles.

Power Cycles and Power Cycle Components/Processes Analysis
Price per license
$20.00
No. of licenses
Total
$20.00
Get Bulk Pricing
30-Day Money Back Guarantee Full Lifetime Access

Or

Get Coggno Prime Now

Syndication Option

Resold modules appear on your website. You earn syndication share from each purchase. Contact Coggno to learn more on how to embed your own Portable Webshop in your website.

Resell

Sale Share: $4.80

to be added

Courses Handpicked for you

5 Course rating 0 ratings