Created by Engineering Software
Category Professional Development > Personal Development
Carnot Cycle
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Brayton Cycle (Gas Turbine) for Power Application
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Otto Cycle
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Diesel Cycle
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Compression
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Combustion
Analysis
Case Study A
Case Study B
Case Study C
Case Study D
Assumptions
Governing Equations
Input Data
Results
Case Study A
Case Study B
Case Study C
Case Study D
Figures
Conclusions
Expansion
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Nozzle
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Diffuser
Analysis
Assumptions
Governing Equations
Input Data
Results
Conclusions
Basic energy conversion engineering assumptions and equations
Know basic elements of Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion and expansion processes and compressible flow (nozzle, diffuser and thrust) and their T - s, p - V and h - T diagrams
Be familiar with Carnot Cycle, Brayton Cycle, Otto Cycle, Diesel Cycle, compression, combustion, expansion and compressible flow (nozzle, diffuser and thrust) operation
Understand general performance trends
English
Or
Subscribe to Coggno Prime
Unlock unlimited access to all courses with a Coggno Prime Subscription!
Boris Rusinovic
about 16 years ago"Advanced Energy Conversion Analysis Webinar is a very thorough engineering webinar that deals with basic and ideal power cycles, power cycle components/processes and compressible flow. Easy to follow format, well organized and structured engineering webinar material that can be used for the purpose of studying and teaching energy conversion. "